Fibre design concepts

November 2008 Infrastructure

In this the second part of the three-part series, Cindo Alves ­discusses the basics of designing fibre-optic systems.

One of the most important considerations in designing a fibre-optic system is the optical loss budget, making sure a proper amount of signal reaches the receiver to ensure proper operation. However, several other factors need to be taken into consideration. This article concentrates on basic design concepts to give a clear idea of how fibre-optic systems are built.

You need more than just optical fibre to make a communications system. Using fibre-optic transmission equipment, any signal, whether it is video, audio or data can be modulated onto light that carries the signal through the glass core of the fibre. A fibre-optic system is primarily composed of three components, although the specifications for each will vary depending on the application. The components are common in every fibre-optic communication system. These are:

* Transmitter – A transmitter uses an electronic signal input to modulate a light source or emitter within the transmitter.

* Fibre-optic cable – The light is then transmitted through an optical fibre cable. There is a multitude of fibre-optic cables for varying environments.

* Receiver – The receiver uses an optical detector that then receives the modulated light and converts it back to an electrical signal.

Optical transmitters

Several factors determine the performance of a fibre-optic transmitter, including the modulation method, the type of light source, the operating wavelength, and the optical power.

* Analogue vs. digital – Some transmitters use analogue waveforms and others operate with discrete digital pulses. Analogue is commonly used as it is inexpensive; however, analogue transmission can become non-linear or distorted. Digital, on the other hand, is more tolerant of noise and distortion.

* Light source – For single-mode fibres, which have a small core, the best match is a transmitter that uses a laser diode (LD) or surface emitting diode, which emits light from an area measuring only a few micrometres. Transmitters that use light emitting diodes (LEDs), which have a larger emitting area, work well with multimode fibres.

* Wavelength – The wavelength used by the optical emitter in the transmitter also affects the systems performance. One example is signal attenuation. The longer the wavelength used by the optical emitter, the less the attenuation. However, there is a trade-off in equipment cost.

* Output power – The light launched or delivered to the fibre must be sufficient to overcome the losses in the fibre-optic cabling system so that sufficient optical power is available for the receiver to detect.

Fibre-optic cable

The optical fibre or fibres are housed in a cable to simplify handling and protect them from environmental stresses. Fibres must be precisely aligned with light sources to collect their output efficiently. Likewise, if light is transferred between fibres, the two ends must be precisely aligned. Because their diameters are very small, mechanical tolerances for proper alignment are tight. Consequently, much more attention must be paid to connectors and splices than in electrical communication over wires. It should be noted that the maximum transmission range of a system is much more dependent on losses in the fibre than on the power of the transmitter (source) or the sensitivity of the receiver (detector).

Optical receivers

Several factors determine the performance of a fibre-optic receiver, including a receiver’s sensitivity, dynamic range, and the detector type used.

* Sensitivity – Sensitivity measures how well a receiver responds to a signal as a function of its intensity. Several factors affect a receiver’s sensitivity including signal quality, optical wavelength, type of detector used and the quality of the amplification circuit.

* Dynamic range – Input signals must be within a detector’s dynamic range, the range of input power over which the receiver produces the desired output, in order to avoid distortion.

* Detector type – The PIN diode is the most common type of diode used. They are relatively inexpensive and do not require great amounts of power, but are limited in sensitivity. Avalanche diodes may be used for increased sensitivity and faster transmission for longer distance applications, however, they cost more.

System design objectives

Now that the three general components of a fibre-optic system have been reviewed, it is time to review how systems are designed. When designing any fibre optic transmission system, whether video, audio or data communications, there are several objectives that need to be kept in the forefront of the designer’s mind.

* Provide a cost-effective system.

* Maximise the optical capabilities of the fibre.

* Minimise light loss (attenuation) in the fibre.

* Maximise reliability.

* Facilitate maintenance of the system.

* Provide for future upgrades and changes in the system.

These objectives will be addressed and considered as you review various concepts and design practices.

Initial design process

During the walkthrough it is imperative to develop a good understanding of your customer’s infrastructure and the out-of-plant environment of the project in order to determine how it will affect the overall design and layout of the system.

1. Locate and/or identify field device locations:

* CCTV cameras.

* Access control panels.

* Intercom stations.

2. Identify existing utilities location:

* Entrance facilities.

* Wiring closets.

* Power.

3. Environmental constraints:

* Temperature.

* Humidity.

* EMI/RFI interference.

4. Describe proposed cable routing:

* Define topology.

* Determine distance between equipment (ie, cable lengths).

* Determine fibre count needed for each cable run – 50% spare is a good rule of thumb.

* Cable access for maintenance and repair.

* Cable construction suitable for the installed environment (ie, indoor/outdoor; conduit/trays).

* NEC compliance.

5. Adherence to codes and ordinances:

* Local building code.

* Acquire proper permits.

Four steps in system design

There are four steps in designing the optical portion of the system that every design professional needs to understand and be capable of performing.

1. Define the operational parameters of the system.

2. Define the cabling plant requirements and calculate the optical path loss.

3. Select the appropriate transmission equipment that meets the operational requirements and the optical power budget for the system.

4. Review the optical loss budget and allow for an appropriate safety margin for the system.

For more information contact Cindo Alves, Alves Audio Visual Services, +27 (0)82 414 2146, [email protected]





Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Western Digital reveals new solutions
Products & Solutions News & Events Infrastructure
Western Digital unveiled new solutions and technology demonstrations at the Future of Memory and Storage Conference 2024. The innovations cater to diverse market segments, from hyperscale cloud to automotive and consumer storage.

Read more...
The Duxbury Services Gateway revolutionises the Edge
Products & Solutions Infrastructure
Duxbury Networking has announced the launch of the Duxbury Services Gateway (DSG) range. These cost-effective edge compute appliances are designed to meet the diverse needs of South African businesses including SD-WAN, Firewall, and IP PBX applications.

Read more...
Navigating the evolving tech landscape in 2024 and beyond
Residential Estate (Industry) Infrastructure
Progress in the fields of AI, VR and social media is to be expected, but what is not, is our fundamental relationship with how we deploy solutions in our business and how it integrates with greater organisational strategies and goals.

Read more...
Eight terabyte desktop SSD
Products & Solutions Infrastructure
Western Digital has expanded its SanDisk portfolio with the new 8 TB SanDisk Desk Drive, its highest capacity yet on an external desktop solid state drive (SSD), also available with 4 TB

Read more...
78% of organisations highly concerned about cloud security
Information Security Infrastructure
As organisations develop and deploy more cloud applications, security becomes more complicated. Many organisations are adopting a hybrid or multi-cloud approach, which has expanded the attack surface and increased complexity.

Read more...
Share large files securely and without delay
Infrastructure Products & Solutions
Professional teams don't have to wait for large file uploads, dabble with insecure sharing platforms, or spend money on file servers and network storage. StorVault FileSpace is a South African solution providing fast, affordable, and secure file streaming.

Read more...
Expanded Cambium cnMatrix portfolio for enhanced network automation
Duxbury Networking Infrastructure Products & Solutions
Duxbury Networking, a southern Africa distributor for Cambium Networks, has announced that Cambium has expanded its cnMatrix switch portfolio with enhanced network automation and the new EX3024F Fibre Aggregation Switch.

Read more...
Do you need a virtual CIO?
Editor's Choice News & Events Infrastructure
If you have a CIO, rest assured that your competitors have noticed and will come knocking on their door sooner or later. A Virtual CIO service is a compelling solution for businesses navigating tough economic conditions.

Read more...
The TCO of cloud surveillance
DeepAlert Verifier Technews Publishing Surveillance Infrastructure
SMART Security Solutions asked two successful, home-grown cloud surveillance operators for their take on the benefits of cloud surveillance to the local market. Does cloud do everything, or are there areas where onsite solutions are preferable?

Read more...
Cyber resilience – protect, defend, recover
Infrastructure
The challenge with AI is that threats are getting harder to detect. As a result, plans in 2024 are not just about detection and prevention, but about recovery.

Read more...