Artificial intelligence on the edge

SMART Surveillance 2024 Surveillance, AI & Data Analytics

In the world of video surveillance, one of the primary benefits of edge computing will be the ability to undertake advanced analytics using artificial intelligence (AI) and deep learning within cameras themselves.

The number of devices on the edge of our security networks is growing and they are playing an ever-more critical role in our safety and security. Edge computing means building more capability onto the connected device itself, so information processing power sits as close to the source as possible.

For a video surveillance network, this means more actions can be carried out on the cameras themselves. The role of artificial intelligence (AI), machine learning and deep learning in video surveillance is growing, so we are able to ‘teach’ our cameras to be far more intuitive about what they are filming and analysing in real time. For example, is the vehicle in the scene a car, a bus, or a truck? Is that a human or animal by the building? Are those shadows or an object in the road?

These insights will reduce the burden on the human input required to analyse data and make decisions. Ultimately, it should speed up response times – potentially saving lives – and provide valuable insights that can shape the future of our buildings, cities and transportation systems.

How can we transform video surveillance on the edge?

Currently, most edge analysis of surveillance camera footage simply shows that something or someone is moving. After this analysis by video management systems (VMS) on centralised servers, it takes a human to interpret exactly what it is and whether it presents any threat or security risk.

To understand whether an object is a vehicle, a human, an animal, or indeed pretty much anything, we can ‘train’ a camera system to detect and classify it. This could lead us to understand an almost unlimited number of classes of objects and contexts.

Standard analytics would pick up that a vehicle has triggered an alert. With an intelligent deep learning layer on top of that you can go into even further detail: What type of vehicle is it? Is it in an area that will cause potential problems, or is it on the hard shoulder and out of immediate danger? Is it a bus that is broken down and likely to endanger people as they disembark?

The benefits of analytics on the edge

The greater accuracy of edge analytics – and the ability to distinguish between multiple classes of object – immediately reduces the rate of false positives. With that comes a related reduction in time and resources to investigate these false positives. More proactively, edge analytics can create a more appropriate and timely response.

For example, running AI analytics on the edge could identify objects on a motorway and alert drivers. However, the ability brought through deep learning to distinguish between a human and a vehicle can help define the level of severity of warning issued to drivers. If cameras saw that there was someone in danger on the road, they could automatically activate signage to slow traffic and alert emergency services.

Over time, developers behind analytics could see trends that would be of use not just for traffic management and planning, but also for other agencies with, for example, an interest in wildlife behaviour and conservation. Being able to differentiate the type of traffic – pedestrians, cyclists, motorists, commercial vehicles – provides valuable trends insights that help civil engineers plan the smart cities of the future.

Turning raw data into actionable analytics insight

Another key benefit of edge analytics is that the analysis is taking place on the highest-quality video footage, as close as it can be to the source. In a traditional model – when analytics takes place on a server – video is often compressed before being transferred, with the analysis therefore being undertaken on degraded quality video.

In addition, when analytics is centralised – taking place on a server – when more cameras are added to the solution, more data is transferred, and this creates the need to add more servers to handle the analytics. Deploying powerful analytics at the edge means that only the most relevant information is sent across the network, reducing the burden on bandwidth and storage.


Credit(s)




Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

AI for retail risk management
Surveillance Retail (Industry) AI & Data Analytics
As businesses face mounting challenges in a volatile economic environment, Ares-i remains an essential tool for proactively identifying, assessing, and mitigating risks that threaten operational stability and customer satisfaction.

Read more...
The need for integrated control room displays
Leaderware Editor's Choice Surveillance Training & Education
Display walls provide a coordinated perspective that facilitates the ongoing feel for situations, assists in the coordination of resources to deal with the situation, and facilitates follow up by response personnel.

Read more...
Top five AIoT trends for 2025
Hikvision South Africa IoT & Automation AI & Data Analytics Facilities & Building Management
Hikvision highlights that with technological advances, AIoT (AI-powered Internet of Things) is transforming industries not just by enhancing security, but also by making the world smarter and more efficient.

Read more...
Six key security technology trends in 2025
Axis Communications SA Surveillance
Axis Communications examines some new trends for the security sector in 2025, as well as some new, old trends that are once again highlighted because of their benefit to the end user in the race to obtain optimal value from technology installations.

Read more...
The need for integrated control room displays
Editor's Choice Surveillance Training & Education
Display walls provide a coordinated perspective that facilitates the ongoing feel for situations, assists in the coordination of resources to deal with the situation, and facilitates follow up by response personnel.

Read more...
Integration is the key to smarter surveillance
Duxbury Networking Surveillance
According to recent market projections, the local security industry is expected to grow by more than 10% annually through 2029, reflecting the increasing demand for smarter, more proactive security solutions.

Read more...
The algorithm of trust
Information Security AI & Data Analytics
Artificial intelligence is not just enhancing threats, it is providing organisations with a smart line of agile and detectable defence.

Read more...
New AI advisor for robot selection
News & Events Industrial (Industry) AI & Data Analytics
Igus’ new AI chatbot has been added to its online platform to enable companies with little previous experience and technological expertise to quickly and reliably put together Low-Cost Automation (LCA) solutions to become more competitive.

Read more...
Federated identity orchestration
Technews Publishing SMART Security Solutions Editor's Choice Access Control & Identity Management Security Services & Risk Management AI & Data Analytics
Understanding exactly who resides at the end of a digital device is key, and simple identity number verification by the Department of Home Affairs is no longer a viable solution on its own.

Read more...
Stay safe while using AI assistants
Kaspersky Information Security News & Events AI & Data Analytics
The new DeepSeek AI assistant has attracted a lot of attention, including the interest of cybercriminals. Kaspersky experts have detected scam activity related to it.

Read more...