Megapixel cameras for facility security and stadia

February 2008 Surveillance

Megapixel cameras are becoming the rage with the ability to zoom digitally into an image and extract that face or key detail for an image or number plate.

Recent articles and e-mails, with the number of advertisements featuring megapixel cameras prompts some discussion on the merits and preferences for these high resolution cameras; as there are areas to watch out for and considerations to be made.

Extracting that key bit of information or drilling down into the image to provide facial identification is a function of pixel density. The UK Home Office has agreed upon a rating of 40 pixels in a foot or 133 pixels in a metre to give reasonable facial identification. A pixel is a square as opposed to the traditional dot that we see from an analogue signal as on a TV set. One first needs to understand that the basis of any calculation needs to know the pixel capability of the CCD or CMOS chip and how the shuttering mechanism is used to provide exposure of the image. There are differences between CCD and CMOS chips that must be considered but in this scenario the focus is on the shutter and the ability to gain uniformity of image.

Shutter performance is usually a roller or global mechanism, providing the basis for interlaced scanning - the traditional CCTV route, progressive scanning as seen in IP cameras, and variations of line scanning for niche market solutions. Capturing an image through a global shutter will expose the complete picture in one go as opposed to a rolling shutter, which can cause some imbalance on lighting and exposure. Each of these scanning mechanisms will provide differing results that will ultimately affect the quality of picture received and are worth more consideration before making your choice.

The global shutter can be used with either the CCD or CMOS chip and dependent upon the application will normally give a better balanced image, assessed at one exposure, greater uniformity across the complete image resulting in an ability to differentiate between a very light part of the photo and a darker area with excellent contrast. Using a rolling shutter one is more likely to be affected by light differentiation creating blooming where there is excessive lighting, blurring with movement or poor differentiation in darker areas. This is shown in the picture below where the top global shutter image has better contrast and therefore any area of the image can be clearly seen once enhanced:

Pixel-perfect

The reason for careful consideration is the range of cameras that are available offering anything from 2 MP (megapixels) right through to 21 MP and even an 85 MP camera in development. Pixel calculation is based upon the number of pixels used both horizontally and vertically to make up a full picture. A camera uses 10 240 pixels horizontally and 2048 pixels vertically, described as 10 240 (H) x 2048 (V) which give a multiplied total of 20 971 520 or rounded to 21 million pixels; a 21 MP camera.

To get to the 21 MP pixel count this particular camera uses a line scanning system and therefore the horizontal count is based upon one horizontal pixel and 10 240 line scans to achieve the horizontal total of 10 240 pixels across a 90° field of view (FOV). What this means is that to find the key focal point for facial identification will mean calculating through a formula to find the required focal length. One does this by applying the 133 pixel count for facial ID to the horizontal and vertical measurements giving us 10 240/133 and 2048/133 which equates to 77 m (H) and 15 m (V). From this we can ascertain the key focal point using R=C/2Pi where R is radius, C is applied circumference and Pi is 3,142, therefore the calculation becomes R = 77 x 4 (as the FOV is 90°) divided by 2 x 3,14, equating to 49 metres.

So, with this camera effective facial recognition will be achieved at up to 49 m from the camera depending upon the focus.

Understanding this aspect of the camera use is critical to avoid falling into the trap of seeing an amazing picture in demonstration and only when an important piece of evidence is required discovering that the facial capture is insufficient for your needs; ie, no facial ID.

Consider a football field which has dimensions of 90-120 m length and 45-90 m width, a stadium built around the field may extend back a further 50 m on all sides. The user will need to consider a camera and lens capable of handling the greater distance. Within the stadium there are also the issues of lighting and darkness with excessive contrasts depending upon the time of the game, sunlight, overhanging stands, spotlight, and surrounding illumination. The use of a global shuttered camera with a good pixel ratio will help in this regard as the focal point can be adjusted by merely changing lenses.

Consider a 16 MP camera: the pixel ratio of 4873 (H) by 3218 (V) pixels will remain the same if you use a 24 mm (74° lens) compared to an 85 mm (24° lens); all that will change is the key focal point. In this regard, using the same formula as above represented by the focal point R=C/2Pi where R (radius) = C (circumference) divided by 2 x Pi (3,14), with C as 360° divided by the 24° of the lens multiplied by the horizontal length (R = 360/24 x (4,873/133)) or 549 m giving a total of 87 m as the focal point for facial ID for an 85 mm lens. Note that the focal point needs to be adjusted to the hyperfocal distance which will give an effective depth of FOV from some 20 m or more in front of this point to much further out.

The dynamics of the above formulae may seem excessive and difficult at first to understand. The concept of realising how to get the right pixel count at a set distance will allow the facial or similar identification to be achieved at a required point. Choosing a camera based purely on its megapixel rating and believing 'the higher the better' is not the way to go. Laying out the various fields of view of each camera and understanding what results it will give at the time of an incident is as important as deciding on a budget and finding the right company to purchase from.





Share this article:
Share via emailShare via LinkedInPrint this page



Further reading:

Smarter investigations in Security Center SaaS
Genetec Surveillance
Genetec has announced new intelligent automation (IA)-powered investigation capabilities in Security Center SaaS to help operators quickly locate video evidence, understand the context surrounding an event, and close cases in minutes.

Read more...
ONVIF to end support for Profile S
News & Events Surveillance
ONVIF has announced that it will end support for ONVIF Profile S and recommends using its successor, Profile T. Profile S is the first-ever profile introduced by ONVIF in 2011.

Read more...
IQ and AI
Leaderware Editor's Choice Surveillance AI & Data Analytics
Following his presentation at the Estate Security Conference in October, Craig Donald delves into the challenge of balancing human operator ‘IQ’ and AI system detection within CCTV control rooms.

Read more...
Recording 40 high-resolution channels
Dallmeier Electronic Southern Africa Surveillance Products & Solutions
With the new MK4 revision of the DMS 2400, Dallmeier introduces a more powerful version of its video appliance, enabling the recording of up to 40 high-resolution video streams, and offering significantly increased capacity.

Read more...
New Edge AI Plus PTZ cameras with analytics
Products & Solutions Surveillance
IDIS has unveiled two new PTZ cameras that are NDAA-compliant, delivering AI auto-tracking, rapid 40x zoom, EIS image stabilisation, and advanced automated AI functionality.

Read more...
Direct-to-cloud surveillance platform
Surveillance Infrastructure
Oncam has announced a forthcoming end-to-end, direct-to-cloud video platform that combines AI-enabled cameras, intelligent IoT devices, and cloud-integrated video management software to deliver smarter performance with reduced complexity.

Read more...
Smarter security for real-world challenges
Secutel Technologies Surveillance
SecuVue connects existing CCTV cameras directly to the cloud, delivering exception-based alerts instead of endless footage. Visual Messenger ensures every alert and event reaches the control room securely and instantly.

Read more...
Drones and a hint of access control
Surveillance Products & Solutions
Drones are an indispensable tool for security operations, with more functionality and capabilities than ever. Securex Cape Town 2025 will naturally have drone service providers available to light the way for interested parties.

Read more...
Innovations in video management
Arteco Global Africa Surveillance
Visitors to Securex Cape Town this year will have the opportunity to experience Arteco’s latest innovations in video management and integrated security technology, including uSee VMS, Arteco’s hybrid-cloud video management platform.

Read more...
Human-centric control rooms
Iritron Integrated Solutions Surveillance Residential Estate (Industry)
Iritron and Oculus show that when it comes to control rooms, people, not just technology, are at the centre of the most significant performance differentiators today, not just how efficiently the technology works.

Read more...










While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd. | All Rights Reserved.